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Abstract—Orthogonalization consumes much of the run time
of many iterative methods for solving sparse linear systems
and eigenvalue problems. Commonly used algorithms, such as
variants of Gram-Schmidt or Householder QR, have performance
dominated by communication. Here, “communication” includes
both data movement between the CPU and memory, and mes-
sages between processors in parallel. Our Tall Skinny QR (TSQR)
family of algorithms requires asymptotically fewer messages
between processors and data movement between CPU and
memory than typical orthogonalization methods, yet achieves the
same accuracy as Householder QR factorization. Furthermore, in
block orthogonalizations, TSQR is faster and more accurate than
existing approaches for orthogonalizing the vectors within each
block (“normalization”). TSQR’s rank-revealing capability also
makes it useful for detecting deflation in block iterative methods,
for which existing approaches sacrifice performance, accuracy, or
both.

We have implemented a version of TSQR that exploits
both distributed-memory and shared-memory parallelism, and
supports real and complex arithmetic. Our implementation is
optimized for the case of orthogonalizing a small number (5–20)
of very long vectors. The shared-memory parallel component uses
Intel’s Threading Building Blocks, though its modular design
supports other shared-memory programming models as well,
including computation on the GPU. Our implementation achieves
speedups of 2 times or more over competing orthogonalizations.
It is available now in the development branch of the Trilinos
software package, and will be included in the 10.8 release.

Index Terms—communication-avoiding; iterative methods; nu-
merical linear algebra; orthogonalization; parallel; QR

I. INTRODUCTION

The Tall Skinny QR factorization (TSQR) is a family of
algorithms for computing the QR factorization of a matrix with
many more rows than columns. Demmel et al. [1] describe
TSQR in detail, and give a full analysis of its communication
and computational complexity. Our original motivation for
TSQR is to improve the performance and accuracy of the
normalization step in Block Gram-Schmidt orthogonalization.
Block Gram-Schmidt (BGS) orthogonalizes entire groups of
vectors (“blocks”) at a time. For a detailed analysis, see e.g.,
Stewart [2]. Given a block of vectors X and k blocks of
previously orthogonalized basis vectors Q1, . . . , Qk, BGS
orthogonalizes X in two steps:
• Project: For each Qj , compute the block inner product

Cj := Q∗
jX and the update X := X − QjCj . When

finished, X is orthogonal to Q1, . . . , Qk.
• Normalize: After the projection step above, orthogonalize

the columns of X . Optionally, detect the rank of X

and identify a basis for the column space, if X is rank
deficient after projection.

Existing normalization algorithms include Classical Gram-
Schmidt (CGS), Modified Gram-Schmidt (MGS), the House-
holder QR factorization, and an approach based on the
Cholesky or eigenvalue factorization of the Gram matrix of
X described by Stathopoulos and Wu [3]. In Demmel et al.
[1], we show that TSQR communicates asymptotically less
than CGS, MGS, or Householder QR, and no more than the
method of Stathopoulos and Wu. Communication dominates
the performance of orthogonalization methods when vector
lengths are much longer than the number of vectors, which is
the typical case. Furthermore, TSQR is also just as accurate
as Householder QR, and more accurate than all the other
approaches.

Our original interest in normalization kernels comes from
our Communication-Avoiding GMRES (CA-GMRES) algo-
rithm, which we summarize in Demmel et al. [4] and describe
in detail (along with other communication-avoiding iterative
methods) in Hoemmen [5]. CA-GMRES is a rearrangement
of standard GMRES that computes vectors in blocks, rather
than one at a time. One step of CA-GMRES works like this:

1) Generate a small number s of candidate Krylov basis
vectors, using an efficient computational kernel called
the “matrix powers kernel” (see also [6], [7]).

2) Project the s candidate vectors against previously or-
thogonalized blocks of basis vectors.

3) Normalize: Use TSQR to make the s vectors mutually
orthogonal.

In CA-GMRES, the number of columns s per block is typically
small – perhaps only 5 or 10 (see Demmel et al. [4]). Block
iterative methods, for solving clustered eigenvalue problems
and linear systems with multiple right-hand sides, are another
set of algorithms which can benefit from better normalization.
See e.g., Golub and Underwood [8], O’Leary [9], Stewart [2],
and Baker et al. [10]. Block iterative methods also use Block
Gram-Schmidt. The application often dictates the number of
vectors per block, but it is common to use blocks of no more
than 20 vectors.

The small number of columns in the block to normalize
affects TSQR optimizations in ways incompatible with exist-
ing implementations of TSQR, such as in the PLASMA and
MAGMA projects (see Agullo et al. [11]). These implementa-



tions use TSQR as the panel factorization in a general dense
QR factorization, called CAQR (see Demmel et al. [1]). CAQR
requires dividing the panel into square blocks. If the number
of columns in the panel is too small, this introduces too much
overhead. As a result, TSQR implementations intended for
this application are optimized for the case of square blocks,
of a size large enough to justify the overhead of reorganizing
data into cache blocks and using dynamic scheduling. In
contrast, our implementation assumes blocks with more rows
than columns, in order to use cache more effectively and
minimize overhead.

Many Krylov and block Krylov methods for sparse eigen-
value problems require a rank-revealing orthogonalization
method. TSQR can be easily adapted for this purpose, and
we have done so in our implementation. It is potentially
more accurate and faster than implementations based on
Gram-Schmidt orthogonalization, such as the Modified Gram-
Schmidt reorthogonalization procedure with randomization
described by Stewart [12]. (See Hoemmen [5, Chapter 2] for
a fuller discussion.) There are many possible versions of rank-
revealing TSQR, but they all begin by computing the QR
factorization A = QR. Since R is much smaller than A,
computations on R are practically free. For example, we can
compute a QR factorization with column pivoting:

A = QR,RΠ = QRRR, AΠ = (QQR)RR,

a singular value decomposition (SVD):

A = QR = Q(UΣV ∗) = (QU)ΣV ∗,

or a polar decomposition:

A = QR = Q(UΣV ∗) = (Q(UV ∗))V ΣV ∗.

The polar decomposition is an essential tool for solving
the orthogonal Procrustes problem (Higham [13]). It may
be useful for Krylov methods because the orthogonal1 polar
factor Z = Q(UV ∗) is unique in exact arithmetic. This
is not necessarily true of the orthogonal factor Q in a QR
factorization. It is only unique up to a unitary scaling of the
columns of Q and the rows of R. For example, this means
that the diagonal of R may have negative entries. However,
Krylov methods like GMRES and Arnoldi require the diagonal
of the R factor to be nonnegative (see [5, Chapter 3] for
details). In Demmel et al. [14], we explain how to change
how the Householder reflectors in the QR factorization are
computed, so that the R factor always has a nonnegative
diagonal. This also makes Q unique in exact arithmetic. This
capability has been in LAPACK since version 3.2. However,
as of LAPACK version 3.2.2, this feature is not enabled by
default for the QR factorization, since some inputs exist for
which it results in somewhat degraded accuracy. This does
not appear to affect the accuracy of TSQR in practice, as
we show experimentally in Section V. However, using TSQR
to compute a polar factorization solves this problem, with

1We use the term “orthogonal” to mean both orthogonal in real arithmetic,
and unitary in complex arithmetic.

appropriate modification of GMRES and Arnoldi so that they
work with a block upper Hessenberg matrix (such as in the
Block Krylov-Schur method [2]).

A third class of applications for TSQR involves matrices
with many more rows than columns, but where the number
of columns is large enough that the approach of this paper
may not suffice for good performance. Many data analysis and
distillation applications fall into this category. For example,
Robust Principle Component Analysis (see Candès et al. [15])
involves computing the SVD of matrices with perhaps millions
of rows, but only a hundred or so columns. The number of
floating-point operations in both TSQR and ordinary House-
holder QR increases with the square of the number of columns.
Thus, the large number of columns increases the cost of
floating-point arithmetic relative to data movement costs. We
describe in [1] BLAS 3 optimizations that can improve the
performance of TSQR in this case, but as the number of
columns increases, it may be better to use a more general
QR factorization. We do not address this class of applications
in this paper.

This paper is organized as follows. Section II summarizes
the algorithms underlying TSQR, which the full implemen-
tation composes hierarchically to exploit different levels of
parallelism effectively. Section III explains the computational
kernels in which TSQR performs all its floating-point opera-
tions. We show performance results for TSQR’s components
in Section IV, and summarize accuracy results in Section
V. Section VI gives performance results for the full TSQR
implementation, both alone and combined with block orthog-
onalization. We conclude and discuss ongoing work in Section
VII.

II. ALGORITHM

In this section, we summarize the TSQR family of al-
gorithms, and explain its various components. In [1], we
describe both parallel and sequential cache-blocked versions
of TSQR in detail. We construct a performance model includ-
ing arithmetic and communication, and compare this model
with models of Modified Gram-Schmidt and Householder
QR, showing that parallel TSQR requires less communication
between processors, and sequential cache-blocked TSQR re-
quires less data movement between cache and main memory.
In [4], we discuss a shared-memory parallel, cache-blocked
implementation of TSQR, as one component in a prototype of
a new iterative solver.

This work combines these results to exploit two levels of
parallelism:
• Distributed-memory, via the Message Passing Interface

(MPI) [16]
• Shared-memory, currently via Intel’s Threading Building

Blocks [17] framework (though the modular structure of
the library makes it easy to swap in other implementa-
tions)

The resulting TSQR library works for the same real and
complex data types supported by the BLAS and LAPACK. In
this paper, when we refer to the “full TSQR algorithm” or to



“TSQR” without further qualification, we mean this two-level
parallel approach.

A. The full TSQR algorithm

1) Factor phase: TSQR begins with an m × n matrix A
with m � n, stored in block row fashion among P MPI
processes. Each process k has an mk × n block Ak with
mk ≥ n. First to operate on the matrix is the shared-memory
part of TSQR, which must implement an interface we call
NodeTsqr. Currently, NodeTsqr has two different concrete
implementations:
• SequentialTsqr, a sequential cache-blocked algo-

rithm, suitable for MPI-only parallelism (one MPI pro-
cess per CPU core)

• TbbTsqr, a multithreaded parallel implementation, suit-
able for hybrid CPU parallelism (multiple CPU cores per
MPI process)

NodeTsqr on MPI rank k factors that rank’s block Ak in
place, storing the Q factor implicitly. (The implicit repre-
sentation depends on the implementation; see Sections II-B
and II-D for specific examples.) Then, the distributed-memory
part of TSQR, DistTsqr, finishes the factorization phase.
DistTsqr computes the QR factorization of the “R stack”:
an nP ×n matrix distributed among P MPI processes, where
each rank k’s part of the matrix is an n× n upper triangular
matrix Rk. There are two different versions of DistTsqr,
which we describe in Section II-C. Both require dlog2 P e
messages on P MPI processes for the factorization phase. The
results of this phase are the R factor of the R stack, and a Q
factor of the R stack, stored implicitly in distributed fashion
among the MPI processes.

2) Explicit Q phase: When the factorization phase is com-
plete, DistTsqr then computes the explicit version of the ex-
plicitly stored Q factor of the R stack. Since TSQR combines
blocks of rows, it cannot form the explicit Q factor in place
by overwriting the implicit Q factor, unlike ScaLAPACK’s
P_ORGQR routine.2 Thus, DistTsqr computes the explicit
Q factor of the R stack by applying the implicit Q factor to
an nP × n matrix C, consisting of the first n columns of the
identity matrix. Each MPI process k has an n × n block Ck

of C. This “apply” phase of the computation again requires
dlog2 P e messages. See Section II-C for diagrams of the factor
and apply phases, for both implementations of DistTsqr.

After DistTsqr has finished its explicit Q phase, each
MPI rank k has a copy of the final R factor of the entire
matrix A. Then, each MPI process k writes the resulting n×
n matrix Ck into the top block of an mk × n matrix Qk,
which initially contains zeros. Finally, on each MPI process
k, NodeTsqr applies its implicitly stored Q factor to Qk,
resulting in process k’s component Qk of the explicit Q factor.
At this point, NodeTsqr may either keep its implicitly stored

2Throughout this paper, when we refer to ScaLAPACK, LAPACK, or BLAS
routines without concern for the specific floating-point data type, we replace
the letter in the name corresponding to the data type with an underscore: for
example, _GEMM instead of SGEMM, DGEMM, CGEMM, or ZGEMM.

Q factor, or recycle the storage (which is what we generally
do when orthogonalizing vectors.)

B. Sequential cache-blocked TSQR

SequentialTsqr implements the sequential cache-
blocked TSQR algorithm we describe in Demmel et al. [1]. It
reads and writes asymptotically less data between cache and
main memory than comparable algorithms, such as LAPACK’s
Householder QR implementation or Modified Gram-Schmidt
orthogonalization. Memory traffic is expensive on modern
multicore CPUs, so SequentialTsqr should run signif-
icantly faster than competing algorithms. This component
implements the NodeTsqr interface described above. It also
is invoked by the shared-memory parallel part of TSQR (see
Section II-D).

1) Algorithm: SequentialTsqr takes as input an m×n
input matrix A stored in column-major order. It divides up
the matrix by row blocks into cache blocks. The cache blocks
have the same stride as A, so the caller’s data does not need
to be reorganized. (There is also an option to reorganize cache
blocks into contiguous storage, which we discuss below.)
SequentialTsqr then makes two passes over the matrix:

1) A “factor phase,” which passes from top to bottom
sequentially through the cache blocks of A. It computes
the R factor, and overwrites the input matrix with an
implicit representation of the Q factor.

2) An “apply / explicit Q phase,” which passes from bottom
to top (when applying Q; when applying QT or QH , top
to bottom) sequentially through the cache blocks of A.
It applies the implicit Q factor to the first n columns of
the identity matrix, thus computing the explicit Q factor.
(TSQR cannot compute the Q factor in place; there is
no equivalent to LAPACK’s _ORGQR routine.)

SequentialTsqr can function as a standalone QR factor-
ization. (With the right interface, it would be a drop-in replace-
ment for LAPACK’s _GEQR2 and _ORMR2 panel QR factor-
ization routines.) However, when using SequentialTsqr
in combination with other TSQR components, such as
DistTsqr (see Section II-C) and / or TbbTsqr (see Section
II-D), the apply phase of SequentialTsqr involves apply-
ing the implicitly stored Q factor to an m×n matrix consisting
of all zeros except for the top n × n top block. That n × n
block in turn comes from the apply phase of DistTsqr resp.
TbbTsqr.

2) Tuning parameters: SequentialTsqr has two tuning
parameters: the cache size in bytes, and whether cache blocks
are stored contiguously. The cache size setting bounds above
the number of rows in each cache block in the matrix.
We currently allow users to set the cache size themselves,
and pick a reasonable default if they do not. Discovering it
automatically is future work. If the cache size is set too large,
TSQR will thrash the cache. Our implementation runs one
instance of sequential cache-blocking TSQR per CPU core,
so for best locality, it makes sense to choose the cache size as
that of the largest-level private cache for each core. If cores



only have a small private L1 and a shared L2, then it makes
sense to divide the L2 size by the number of cores sharing it.

The second tuning parameter governs whether TSQR as-
sumes that the matrix is stored with contiguous cache blocks,
rather than in the usual column-major order. We provide
routines for converting to and from this layout. Its advantage
should be to reduce the total number of memory pages loaded
for very large matrices, thus avoiding TLB (Translation Looka-
side Buffer) thrashing. However, our performance experiments
(see Section IV-C) show that this layout does not significantly
improve performance for the matrix sizes we tested.

C. Distributed-memory parallel TSQR

The DistTsqr module performs all communication be-
tween MPI processes in TSQR. We implemented two different
algorithms for DistTsqr: “Butterfly,” and “Reduce and
Broadcast.”

In “Butterfly,” pairs of MPI processes exchange data at each
stage, as in an all-reduce. We implement the exchange using a
nonblocking send and receive between each pair of processes.
The factor phase, with a critical path length of dlog2 P e on
P processes, computes the R factor (which ends up on all
processes) and an implicit representation of the Q factor of the
R stack. Both are computed redundantly. Figure 1 illustrates
the factor phase of Butterfly. The apply phase, shown in Figure
2, applies the implicit Q factor of the R stack to a matrix
C. This phase also has a critical path length of dlog2 P e on
P MPI processes. If the matrix C contains n columns of the
identity, then the explicit Q factor of the R stack is computed.
This involves unnecessary work, since many processes end up
exchanging and operating on zeros. However, the Butterfly
version can also apply the Q factor (or QT or QH , with
a reversed version of the algorithm) to an arbitrary matrix
(e.g., when solving least-squares problems). The Reduce and
Broadcast version cannot do this.

The second algorithm, called “Reduce and Broadcast” (RB),
uses a different communication pattern. In the factor phase,
shown in Figure 3, only one process in a pair sends, and the
other process receives, computes, and stores the results. The
resulting R factor of the R stack ends up on MPI rank 0, as
in a reduction to rank 0. The implicit Q factor is stored in
a tree, without redundancy. The second “explicit Q” phase,
illustrated in Figure 4, reverses this process, as in a broadcast.
RB’s second phase is only capable of computing the explicit
Q factor, since it applies the Q factor to a matrix distributed
among processes, where only the root process’ part of the
matrix has nonzero entries. This is the typical use case of
TSQR in Krylov subspace methods. However, users must
commit to this representation when they first factor the matrix;
they cannot use the results to apply Q to a general matrix.

The disadvantage of the Butterfly implementation is that it
sends and receives many more messages at once. In particular,
Reduce and Broadcast only sends or receives at most one
message per multicore node at a time. In contrast, at each stage
of the factorization and apply / explicit Q phases, Butterfly
both sends and receives as many messages per node as there
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Fig. 1. Factor phase of Butterfly implementation of DistTsqr, on P = 4
MPI processes, of an nP × n matrix. See the caption of Figure 3 for a key.
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are MPI processes on that node. If messages serialize at the
network interface of the node, this can result in a bottleneck.
We expect MPI process counts per node to increase, given
that that number of NUMA (Non-Uniform Memory Access)
regions is increasing, and running one MPI process per NUMA
region offers best performance overall for solvers (see Edwards
[18]). Thus, we expect the Reduce and Broadcast variant to be
faster, especially for large numbers of MPI processes. Indeed,
we found this to be the case, as our performance results in
Section IV-D show.

We were surprised, however, that the Butterfly variant
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performed better for small MPI process counts. This may have
something to do with our use of nonblocking communication
in that implementation, even though neither algorithm offers
an opportunity to overlap communication and computation.
Future work may include automatic run-time performance
tuning to pick the fastest implementation of DistTsqr. The
advantage of Butterfly is that it works both for computing
the explicit Q factor, and for applying Q, QT , or QH to an
arbitrary matrix.

Both implementations of DistTsqr use a binary tree,
though they accept arbitrary MPI process counts. If the number
of processes is not a power of two, some of the processes
idle at some stages. A binary tree is not necessary; any tree
shape would work, as long as the factor and apply / explicit Q
parts uses the same tree shape. (This is because DistTsqr

stores data in the interior nodes of the tree. As a result,
DistTsqr cannot be implemented using MPI’s reduce or
all-reduce collective operations.) We may investigate other tree
shapes in future work.

D. Shared-memory parallel TSQR

The TbbTsqr module implements a shared-memory paral-
lel version of TSQR within a single MPI process. It thus imple-
ments the NodeTsqr interface. The parallel part of TbbTsqr
works much like the Butterfly version of DistTsqr (see
Section II-C), except that since it runs in a single memory
space, it does not need to send messages between processors.
TbbTsqr first breaks up the input matrix into a number
of row blocks equal to the number of threads to use. It
then assigns one SequentialTsqr task per thread, which
produces an R factor. TbbTsqr then combines these R factors
in a binary tree, just like DistTsqr.

This component uses Intel’s Threading Building Blocks
framework for parallelism. In particular, it invokes the
tbb::task interface directly to assign tasks to the dynamic
scheduler. We set as many tasks as there are CPU cores (or
let the user specify how many tasks to use). Each task first
performs sequential cache-blocked TSQR on its part of the
matrix, and then the tasks combine their results in a binary
tree. This approach minimizes the number of synchronization
points between threads. While it does nothing to optimize
for Non-Uniform Memory Access (NUMA), we consider
NUMA optimizations at the shared-memory level of TSQR
unnecessary. This is because for iterative solvers, the best
overall configuration of MPI and shared-memory parallelism is
to run one MPI process per NUMA region, and parallelize with
threads inside each NUMA region (see Edwards [18]). With
the appropriate settings, each MPI process will stay within
its NUMA region, and it will only allocate memory within
that reason. In contrast, typical shared-memory programming
models require much more programmer effort in order to
ensure that each thread only works on data within its NUMA
region (see e.g., [4]).

III. COMPUTATIONAL KERNELS

In this section, we describe the Combine module. This
module implements the computational kernels in which TSQR
performs all its floating-point arithmetic. The module’s name
indicates that the kernels combine the results of previous steps
in the factorization. For good performance, these kernels must
operate on the data in place, rather than copying in and out
of temporary storage. TSQR works in a memory bandwidth -
limited regime, so it cannot afford to do more copying than
necessary.

In Section III-A, we describe the four kernels and show
where they are used by higher-level TSQR components. In
Section III-B, we explain our optimization choices. Section
IV-B will compare the performance of these kernels with that
of LAPACK’s corresponding kernels.



A. The four kernels

The four kernels come in “factor” and “apply” pairs. “Fac-
tor” kernels correspond to LAPACK’s _GEQRF routine (QR
factorization, overwriting the input with the R factor and an
implicit representation of Q). “Apply” kernels correspond to
LAPACK’s _ORMQR (apply the implicitly stored Q factor to
a matrix). TSQR does not need an equivalent to LAPACK’s
_ORGQR, because the row block tree structure of TSQR makes
it impossible to compute the explicit Q factor in place.

1) “Inner” kernels: The “inner” kernels work with an input
matrix [R; A], where R is n×n upper triangular, and A is m×
n. The matrix A is stored separately from R with a possibly
different stride. These kernels are used by the sequential cache-
blocked TSQR module (see Section II-B), and they perform
most of the floating-point arithmetic in a TSQR invocation.
The name “inner” comes from the factorization kernel being
an inner, i.e., not the first, step of the sequential cache-blocked
TSQR factorization.

The first “inner” routines, factorInner, computes the
QR factorization of [R; A]. It overwrites R with the resulting
R factor, and overwrites A with the Householder reflectors
implicitly representing the Q factor. Here, A corresponds to a
cache block of the input matrix to factor. The applyInner
routine, in turn, applies the implicitly stored Q factor (or QT

or QH ) from factorInner to the matrix [C1; C2], where
C1 is n × q and C2 is m × q, q ≥ 1, and C1 and C2 may
have different strides. The typical case is q = n. Here, C2

corresponds to a cache block of the output Q factor.
2) “Pair” kernels: The “pair” kernels work with an input

matrix [R1; R2], where R1 and R2 are each n × n upper
triangular, stored separately with possibly different strides.
These kernels are used in both the shared-memory parallel
(Section II-D) and distributed-memory parallel (Section II-C)
TSQR components.

The factorPair routine computes the QR factorization
of [R1; R2]. It overwrites R1 with the resulting R factor,
and overwrites R2 with the Householder reflectors implicitly
representing the Q factor. The applyPair routine applies the
implicitly stored Q factor (or QT or QH ) from factorPair
to the matrix [C1; C2], where C1 and C2 are each n× q with
q ≥ 1, are stored separately, and may have different strides.
The typical case is q = n.

B. Optimization choices for the Combine kernels

1) In-place operation: Most of the memory traffic in TSQR
happens in the “inner” routines. This is because the number
of columns n in the matrix is small, but the cache blocks
are chosen with enough rows to fill the largest private cache
(or portion of a shared cache) belonging to a single CPU core.
While one could implement these kernels by copying the input
matrices into contiguous storage and calling the corresponding
LAPACK routines, we found in previous work (see Demmel
et al. [4]) that the overhead of copying the data in and out can
double the runtime. The number of columns n is small enough
that memory bandwidth is an important part of TSQR’s run
time. As a result, our implementations work in place on the

input data. This feature improves performance, as we show
in Section IV-B by comparison with a copy in/out LAPACK
implementation (CombineDefault).

2) Sequential only: Our implementations of the Combine
kernels do not exploit shared-memory parallelism. This is
because a parallel implementation would require more global
synchronization between threads, and would also reduce po-
tential locality. We choose instead a coarser-grained paral-
lelization (over groups of cache blocks) at a higher level than
the Combine kernels, in order to reduce the frequency of syn-
chronization. However, for graphics processing units (GPUs)
or hardware that supports a similar model of parallelism, with
fast synchronization among threads in a group, it may make
sense to parallelize the Combine kernels. Our collaborator,
Michael Anderson (see Section VII), has used this technique in
his GPU implementation of TSQR. Another way to parallelize
the Combine kernels would be to use a multithreaded BLAS
implementation. We show in Section IV-B that multithreaded
BLAS implementations do not parallelize QR effectively when
the number of columns is small. Thus, shared-memory parallel
TSQR is always a better choice than a parallel Combine
implementation on multicore CPUs.

3) Fortran vs. C++: Fortran compilers have a repu-
tation for producing faster code than C++ compilers, in
part because the Fortran standard allows compilers to as-
sume that arrays are not aliased. We tested this by writ-
ing both a C++ and a Fortran implementation (with a thin
C++ wrapper) of TSQR::Combine: CombineNative resp.
CombineFortran. The results of our performance experi-
ments in Section IV-B show that the Fortran implementation
is always faster.

IV. PERFORMANCE RESULTS

In this section, we present TSQR performance results. We
first break TSQR into its constituent components, and measure
the performance of these separately, compared with competing
algorithms. This is legitimate because TSQR operates in
phases, so if we take the maximum time over all the MPI
processes for each phase, we should get a good indication of
the run time of all of TSQR.

Section IV-A discusses the hardware and software con-
figuration used for our experiments. Section IV-B shows
performance results for the four computational kernels in
TSQR::Combine, Section IV-C for sequential cache-blocked
TSQR and shared-memory parallel TSQR, and Section IV-D
for distributed-memory parallel TSQR. In Section VI that
follows, we show representative benchmark results for the full
TSQR implementation, composed of all these components.

A. Hardware and software configuration

We ran our performance experiments on a Linux cluster
named “Glory,” which was built by Appro and funded by
the U.S. Department of Energy / National Nuclear Security
Administration (DOE/NNSA). Each node of Glory has 16
AMD processors with a clock frequency of 2.2 GHz, arranged
in 4 sockets with 4 cores per socket, and 32 GB of DDR2



DRAM. The nodes are connected by 4x Infiniband with an
OFED stack (Mellanox ConnectX HCA) and Voltaire DDR
Infiniband switches. Glory users may run batch jobs using any
number of nodes from 1 node (16 CPUs) to 64 (1024 CPUs).

Most of our performance experiments use the preferred
software configuration: Version 11.1 of the Intel C++ and For-
tran compilers, OpenMPI version 1.4.1 [19], and Version 11.1
of Intel’s Math Kernel Library (MKL). The MKL includes
implementations of the BLAS, LAPACK, and ScaLAPACK.
To check the effects of BLAS and LAPACK implementation,
we ran some experiments with the AMD Core Math Library
(ACML) version 4.3. To check the effects of MPI implemen-
tation on performance results, we also ran some experiments
with MVAPICH version 1.1 [20].

Our benchmarks measure run time for kernels of interest
using the MPI-standard MPI_Wtime routine, which we mea-
sured to have a resolution of about 10−6 seconds. We repeat
each kernel invocation at least 30 times for slower kernels,
and 100 times for faster kernels, and report the mean time.
For MPI-parallel benchmarks, we collect timings on all MPI
processes, and report the maximum (so, time for the last MPI
process to complete). Unless otherwise specified, we show
performance results only for the double-precision real floating-
point type. Results for other real and complex floating-point
types are comparable.

B. Performance of fundamental kernels

In Figure 5, we show timings for the “inner” computational
kernels in Combine, which take up most of the run time
of TSQR. In this figure, we compare the three different
implementations of Combine. We found that the Fortran in-
place implementation is always fastest, from 1.31 to 1.51 times
faster than the slowest implementation. For smaller matrices,
the C++ implementation is slightly slower than copying in and
out and using LAPACK. This is to be expected, since we did
not optimize the C++ version very much, and it only calls
BLAS 1 routines (vs. the LAPACK implementation, which
spends most of its time in BLAS 2 routines). However, for
larger matrices, the cost of copying in and out makes the
C++ in-place implementation faster. In conclusion, we found
that computing in place, which is the chief advantage of
these custom kernels, significantly improves the performance
of factorInner and applyInner.

We also experimented with using a multithreaded BLAS,
but found that using more than one thread actually made the
routines slower, for all implementations of Combine. It seems
that multithreaded BLAS libraries only achieve speedups from
BLAS 3 trailing matrix updates. In our case, the number
of columns is small enough that not even LAPACK’s QR
factorization would invoke the BLAS 3 path.

All test matrices have column stride equal to the number
of rows. This differs from the typical use case for sequen-
tial cache-blocked TSQR and shared-memory parallel TSQR.
However, we show in Section IV-C that a longer column
stride (as would be the case when working on cache blocks in
place, without reorganizing the data so cache blocks are stored

Fig. 5. Run time in seconds of three implementations of Combine
(factorInner and applyInner in sequence), on the Glory cluster,
for test matrices with n = 10 columns and varying numbers of rows.
Both axes use a log scale. Green upward-pointing triangles show the C++
implementation, red circles the Fortran implementation, and blue downward-
pointing triangles the copy in/out implementation (that invokes LAPACK’s
_GEQRF and _ORGQR in sequence, after copying the input matrices into a
contiguous buffer). For each number of rows, we show abbreviations for the
fastest vs. slowest implementation: “F” for Fortran, “C” for C++, and “L” for
LAPACK copy in/out. We also show the speedup resulting from using the
fastest implementation vs. the slowest.

contiguously) does not significantly affect performance. Thus,
the results of this section reflect performance of the kernels “in
place,” without reorganization of cache blocks into contiguous
storage.

C. Cache-blocked and shared-memory parallel performance

In this section, we report performance results for the sequen-
tial cache-blocked part of TSQR, called SequentialTsqr,
as well as for the shared-memory parallel part of TSQR,
called TbbTsqr. We can discuss their results together, since
TbbTsqr for one thread just calls SequentialTsqr. Fig-
ure 6 shows timings on one node of the Glory cluster, for a
1,000,000 by 10 real double-precision test matrix (factor and
explicit Q computation).

Our results show that rearranging the input data so that
cache blocks are stored contiguously does not significantly
affect performance. This is the case even though we did not
measure the time for reorganizing the data. (In any case,
this should only be done twice: at startup and at output of
final results.) This means that users do not need to pay the
performance and usability cost of reorganizing their data. We
also found that TbbTsqr scales nearly perfectly within a
NUMA region (1–4 threads, on the Glory cluster). Outside
of the NUMA region (8–16 threads), it does not scale so well.
Our shared-memory only benchmark allocates memory before
threads begin their work, and it makes no attempt to control
NUMA placement. Finally, we found that choosing the cache
block size setting near but not greater than each CPU core’s
cache capacity (in this case, 512 KB) results in generally good
performance. Choosing the cache block size too small results



Fig. 6. Run time in seconds of TbbTsqr (factor and explicit Q), on one
node of the Glory cluster, for a 1M by 10 real double-precision test matrix.
Each node of Glory has 16 CPU cores, with 4 cores per NUMA region.
Blue circles show results for each number of threads, from 1 to 16. Above
each data point is an abbreviation “C/N” or “N/C”: if the first letter is “C”,
then using contiguous cache blocks was faster, else leaving the matrix in its
original column-major order was faster. Immediately below the abbreviation
is the speedup resulting from the best choice of contiguous vs. noncontiguous
cache blocks. Below each data point is the cache block size (“CBS”) setting
per thread, corresponding to the fastest time for that number of threads. We
tested cache block sizes in powers of two from 213 bytes to 220 bytes.

in excessive overhead.
We also compared the performance of TbbTsqr with

LAPACK’s QR factorization and explicit Q routine (DGEQR2
resp. DORGQR). As before, we found that using a multi-
threaded BLAS with more than one thread made the code
slower. For the same double-precision real 1,000,000 by 10 test
problem, LAPACK required 1.01298 seconds, nearly twice as
much time as TbbTsqr with one thread, and nearly 10 times
as much time as the best multithreaded TbbTsqr result.

D. Distributed-memory parallel performance

In Figures 7 and 8, we show timings for the distributed-
memory part of TSQR, DistTsqr. These benchmarks were
performed on the Glory cluster, using two different MPI
implementations, on an “R stack” test problem with n = 10
columns and nP rows, for various numbers of MPI processes
P from 4 to 1024. We found that the Reduce and Broadcast
variant of DistTsqr outperformed the Butterfly version for
large MPI process counts, as expected. Speedups varied, but
Reduce and Broadcast was the better choice for 64 or more
MPI processes. However, Butterfly outperformed Reduce and
Broadcast for less than or equal to 16 MPI processes. Timings
varied slightly depending on the MPI implementation, but
overall DistTsqr performs well.

We also timed ScaLAPACK’s QR factorization routines
PDGEQRF and PDORGQR, called as would be done to compute
both the R factor and the explicit Q factor (just as DistTsqr
does). As expected, ScaLAPACK was significantly slower than
DistTsqr, in fact, overall about 20 times slower. (See Figure
9, and note the difference in scales from the previous two

Fig. 7. Run time in seconds of DistTsqr on the Glory cluster, with
MVAPICH 1.1 as the MPI implementation, for an “R stack” test problem
with n = 10 columns, on 4–1024 MPI processes. Blue downward-pointing
triangles show results for 1 MPI rank per socket (4 ranks per node), and green
upward-pointing triangles show results for 1 MPI rank per CPU core (16 ranks
per node). (Limits on the number of nodes users are allowed to reserve on
this cluster mean that we could not collect 1 MPI rank per socket data for
the rightmost two data points.) Each data point is for the best DistTsqr
implementation, either Reduce and Broadcast (R) or Butterfly (B). Above /
below each data point is either B/R or R/B: the first letter indicates the faster
DistTsqr implementation for that number of MPI processes and number
of processes per node, and the number below it is the speedup resulting from
using the faster implementation.

figures.)
We only show performance results for the two cases of one

MPI process per NUMA region, and one MPI process per
CPU core. Recent experiments by Edwards [18] show that
for iterative solvers, running one MPI process per NUMA
region results in the best overall performance. Using one MPI
process per node degrades performance for large matrices, and
using one MPI process per CPU core degrades performance
for small matrices. However, many legacy parallel applications
only use MPI for parallelism, and parts of applications other
than the solver often scale well in that case. Thus, we expect
one process per CPU core to be a common configuration as
well. Since we primarily intend TSQR as an orthogonalization
kernel for iterative solvers, these two MPI configurations are
the most important.

V. ACCURACY

In this section, we show that TSQR produces results of
comparable accuracy to the Householder QR factorization,
as implemented sequentially in LAPACK and in parallel in
ScaLAPACK. We show only a few illustrative results, but for
both real and complex arithmetic. Our TSQR implementation
in the Trilinos software library passes nightly accuracy tests.

TSQR promises results of similar accuracy as the House-
holder QR factorization, and potentially of greater accuracy
than other orthogonalization methods in common use. TSQR’s
accuracy is why we favor it for Krylov methods, over the
simpler and cheaper method of Stathopoulos and Wu [3]. (In
Demmel et al. [1], we call their method “CholeskyQR.” It



Fig. 8. Run time in seconds of DistTsqr on the Glory cluster, with
OpenMPI 1.4.1 as the MPI implementation, for an “R stack” test problem.
All other details are the same as Figure 7 (which see for a key).

Fig. 9. Run time in seconds of ScaLAPACK’s PDGEQRF and PDORMQR
routines in sequence, on the Glory cluster, with OpenMPI 1.4.1 as the MPI
implementation, for the same “R stack” test problem used for Figures 7 and
8. As in Figures 7 and 8, blue downward-pointing triangles show results for 1
MPI rank per socket (4 ranks per node), and green upward-pointing triangles
show results for 1 MPI rank per CPU core (16 ranks per node).

involves computing the Gram matrix with a single all-reduce
operation, and solving the normal equations on the resulting
small dense matrix.) What “accuracy” means for an application
depends on what the orthogonal vectors and their coefficients
are used to compute. For example, the Generalized Minimum
Residual Method (GMRES) for solving Ax = b uses the
coefficients from the orthogonalization to solve a least-squares
problem. However, a reasonable way to measure accuracy of
a QR factorization independently of an application, is to look
at the following two quantities:
• The normwise distance of the computed Q factor from

an orthogonal matrix, for which a good approximation is
‖I −Q∗Q‖

• The “residual” ‖A−QR‖
We measure both of these quantities in the Frobenius norm

C++ data type ‖I −Q∗Q‖F ‖A−QR‖F ‖A‖F
float 5.05527× 1007 2.14331× 1006 1.14881
double 1.74832× 1015 4.42286× 1015 1.1547
complex<float> 6.44408× 1007 2.19481× 1004 1.15019
complex<double> 1.73203× 1015 2.02212× 1014 1.1547

TABLE I
ACCURACY RESULTS FOR TBBTSQR , FOR BOTH REAL AND COMPLEX
DATA, FOR BOTH 32-BIT IEEE-754 SINGLE PRECISION (FLOAT) AND

64-BIT IEEE-754 DOUBLE PRECISION (DOUBLE).

‖ · ‖F . It turns out that computing a nearly orthogonal Q is
harder for an orthogonalization method to achieve than a small
residual norm. We compare the sequential and shared-memory
parts of TSQR against LAPACK’s QR factorization, and the
distributed-memory part of TSQR against ScaLAPACK’s QR
factorization.

A. Sequential cache-blocked and shared-memory parallel
TSQR

As in Section IV-C, we combine the sequential cache-
blocked and shared-memory parallel parts of TSQR, since the
former is just the latter running with only one thread. For a
representative accuracy result, we tested TbbTsqr with 16
threads on a 1,000,000 by 10 test matrix, with a cache block
size of 216 bytes. The test matrix had a condition number
of 1010, with singular values 1, 0.1, 0.01, . . . , 10−10, and
random orthogonal left and right singular vectors. We tested
real and complex arithmetic, each with 32-bit and 64-bit IEEE
754 floating-point values (thus, the four data types supported
by the BLAS and LAPACK). We show both a measure of
orthogonality (‖I − Q∗Q‖F ) and a measure of the residual
(‖A − QR‖F ). Table I shows the results. All results are
close to machine epsilon, as LAPACK QR is as well. The
residual for 32-bit complex floating-point numbers is a bit
larger than expected; we are currently investigating whether
this is of concern. Results for the other TSQR components
are comparable, so we do not show them here.

VI. FULL TSQR PERFORMANCE

Here, we show performance results for the full TSQR
implementation, composed of all the components described
above. We compare it to straightforward implementations of
Classical Gram-Schmidt (CGS) and Modified Gram-Schmidt
(MGS) orthogonalization. TSQR is at least twice as fast as
MGS and about 50% faster than CGS, and also scales well
up to the maximum number of processors (16384) tested.
We benchmark all these orthogonalizations in a complete
software framework in the Trilinos library, which can be
used today in block Krylov subspace methods. In Section
VI-A, we summarize the software architecture of Trilinos’
orthogonalizations. We compare the performance of TSQR,
CGS, and MGS for a representative test problem in Section
VI-B.



A. Orthogonalization in Trilinos

We have integrated TSQR into a full orthogonalization
method in Trilinos’ Anasazi and Belos iterative solvers pack-
ages. Baker et al. [21] give an overview of the software
architecture of Anasazi, which provides iterative eigenvalue
solvers. Belos, which provides solvers for linear systems,
has a similar software architecture. Their design decouples
the numerical algorithms from both distributed-memory and
shared-memory parallelization. This makes it easy to compare
TSQR fairly with other orthogonalizations. For example, all
the vector operations in our MGS and CGS implementations
use MPI and Intel’s TBB for hybrid parallelism, just like
TSQR. For details on Trilinos’ shared-memory parallelization
schemes, see Baker et al. [22].

Anasazi and Belos contain several different orthog-
onalization methods, with various performance and ro-
bustness features, including selective reorthogonalization.
These methods all implement the OrthoManager and
MatOrthoManager interfaces discussed in Baker et al.
They operate on “multivectors,” each of which is a block
containing one or more vectors. Anasazi and Belos were
designed to favor block iterative methods, though they do
implement non-block iterations as well. As mentioned in
Section I, operating on blocks instead of individual vectors
can improve performance. Block methods can also improve
accuracy when solving eigenvalue problems with clusters of
eigenvalues. Anasazi’s and Belos’ orthogonalizations imple-
ment the “project” and “normalize” operations described in
Section I. They also implement a combined “project and
normalize” combined operation, that can save some work
when projection and normalization follow in direct sequence.
The algorithm used for projection for all experiments in this
section, is for each block Qj , first to compute Cj := Q∗

jX via
a single block reduction, and then to compute X := X−QjCj

in parallel (which does not require communication). We call
this “Block Modified Gram-Schmidt,” since it projects one
block at a time, just as MGS projects one vector at a time.

We have made our TSQR-based orthogonalization methods
available in Anasazi and Belos, as TsqrOrthoManager
(which implements the OrthoManager interface)
and TsqrMatOrthoManager (which implements the
MatOrthoManager interface). They pass nightly accuracy
tests and can be used right now in iterative methods.
Anasazi and Belos also allow orthogonalization with
respect to an arbitrary inner product provided by an
operator M , so that 〈x, y〉 = x∗My, where x∗ denotes the
(complex conjugate) transpose of x. TSQR itself can only
orthogonalize with respect to the Euclidean inner product, but
TsqrMatOrthoManager degrades to use a less efficient
and less accurate orthogonalization method when a non-
Euclidean inner product is required. For all tests in this paper,
we use the standard Euclidean inner product 〈x, y〉 = x∗y.

B. TSQR, MGS, and CGS performance

All the orthogonalization methods in Anasazi and Belos
spend some of their time computing checks for whether

reorthogonalization is necessary. These checks involve vector
norms and can be expensive. Our TSQR-based method per-
forms these checks also and has an option to reorthogonalize,
but it does not compute the checks if reorthogonalization
is not being performed. For a fair performance comparison,
we implemented another simple orthogonalization method
SimpleOrthoManager, that performs no reorthogonaliza-
tion or checks for reorthogonalization. Its “project” phase uses
simple Block Modified Gram-Schmidt, and its “normalize”
phase can use either MGS or CGS. SimpleOrthoManager
serves as a performance lower bound for the more accurate
and robust schemes implemented in Anasazi and Belos. In the
following tests, when we refer to “MGS” resp. “CGS,” we
mean SimpleOrthoManager set to use MGS resp. CGS
for normalization. (Note that the projection phase uses block
Gram-Schmidt, so what we call “MGS” should actually be
faster than the textbook vector-by-vector MGS algorithm.)

As above, we performed all experiments on the “Glory”
cluster. We ran with one MPI process per NUMA region,
which as we mentioned in Section IV-D is an overall good
choice for modern multicore architectures. On this architec-
ture, this corresponds to with 4 MPI processes per node and
4 threads per MPI process. All three orthogonalizations tested
use Intel’s TBB library within an MPI process for shared-
memory parallelism. We fixed the number of rows per node at
106, to measure weak scaling of the three methods, and fixed
the number of columns per block at 10.

We performed two sets of experiments: normalization only
(a single block), and a combination of normalization and
projection (five blocks). Both sets include results for two
different MPI implementations: MVAPICH 1.1, and OpenMPI
1.4.1. For all experiments, we first computed a single run, to
remove the effects of the MPI library’s performance tuning
(which we found to be significant with OpenMPI) and the
orthogonalization’s own startup costs. We then timed 10
consecutive runs and computed the mean of the total time.
Given the timer resolution of 10−6 seconds on this system,
all timings in this section should be accurate to at least 3-4
decimal digits.

We expect that TSQR will consistently outperform both
MGS and CGS by a constant factor (which is related to
the number of columns) for all numbers of nodes. Run time
for all three methods should only increase slightly with the
number of nodes. This is verified by our performance results.
Figures 10 and 11 show the single-block results for both MPI
implementations (MVAPICH resp. OpenMPI), where we are
only timing TSQR as a normalization. TSQR is consistently
more than twice as fast as MGS and CGS for all numbers
of nodes tested, up to the maximum number of nodes tested
(1024 nodes, that is 16384 processors).

Figures 12 and 13 show the results for projection and
normalization with 5 blocks of 10 columns each, for MVA-
PICH resp. OpenMPI. In this case, the normalization step
(TSQR, CGS, or MGS) is performed 5 times, and the block
projection operation Cj := Q∗

jX , X := QjCj is performed
1 + 2 + 3 + 4 = 10 times. The latter is computed in the same



Fig. 10. Weak scaling test problem, exercising normalization only for a
single multivector with 10 columns and 106 rows per node. The plot shows
run time in seconds for TSQR, MGS, and CGS on various numbers of nodes
on the Glory cluster, with MVAPICH 1.1 as the MPI implementation.

Fig. 11. Weak scaling test problem, exercising normalization only for a
single multivector with 10 columns and 106 rows per node. The plot shows
run time in seconds for TSQR, MGS, and CGS on various numbers of nodes
on the Glory cluster, with OpenMPI 1.4.1 as the MPI implementation.

way for all three normalization schemes tested. Nevertheless,
projection and normalization with TSQR was up to twice as
fast as projection and normalization with CGS or MGS, on
the maximum number of nodes tested (1024 nodes, that is
16384 processors). The jump in run times for four or more
nodes must be due to the projection step, since we did not
observe it in the experiments with only normalization. It has
nothing to do with TSQR, MGS, or CGS, but it deserves
further investigation.

VII. CONCLUSIONS AND ONGOING WORK

We have developed a TSQR framework in the Trilinos
solvers library [23]. It has been available in standalone form
since the 10.6 release of Trilinos, and will be available in the
next 10.8 release for use as an orthogonalization in iterative
methods. Our TSQR framework uses MPI for distributed-

Fig. 12. Weak scaling test problem, exercising both projection and normaliza-
tion for 5 multivectors with 10 columns each and 106 rows per node. The plot
shows run time in seconds for TSQR, MGS, and CGS on various numbers of
nodes on the Glory cluster, with MVAPICH 1.1 as the MPI implementation.

Fig. 13. Weak scaling test problem, exercising both projection and normaliza-
tion for 5 multivectors with 10 columns each and 106 rows per node. The plot
shows run time in seconds for TSQR, MGS, and CGS on various numbers of
nodes on the Glory cluster, with OpenMPI 1.4.1 as the MPI implementation.

memory parallelism, and Intel’s Threading Building Blocks
(TBB) for shared-memory parallelism on a node. Its modular
architecture makes it easy to port to different implementations
of shared-memory parallelism. We are collaborating with
Michael Anderson of the University of California Berkeley
on a GPU module for this framework, which when completed
will run TSQR on a cluster of GPUs. Combining this with
Trilinos’ other GPU capabilities will enable a new generation
of iterative solvers that perform well on both CPU-only and
hybrid CPU / GPU clusters. Michael Anderson’s GPU TSQR
will be integrated into the MAGMA project (see Agullo et
al. [11]) for use as the panel factorization in a general QR
factorization.

We also plan to develop and deploy communication-
avoiding iterative solvers in Trilinos, such as those presented in
[4] and [5]. This will require a hybrid-parallel implementation



of the matrix powers kernel (see Section I), which our collab-
orators are developing. As we discuss in [4], the performance
of TSQR and this kernel can be linked, and “co-tuning” of the
two kernels together at runtime may be necessary. Future work
will explore runtime co-tuning of the matrix powers kernel and
TSQR.

TSQR offers a fast and accurate orthogonalization method
for small groups of vectors. Combined with Block Gram-
Schmidt, it forms a complete orthogonalization solution specif-
ically tuned for iterative methods. Our TSQR implementation
exploits distributed-memory and shared-memory parallelism
in a modular way, and works on both real and complex data
of different precisions. It achieves significant speedups over
competing orthogonalization methods, at scales from a single
processor to at least 16,384 processors.
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